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ABSTRACT

The preconditioning technique has generally been accepted as an
efficient procedure for accelerating the rate of convergence of an
iterative method. One of the well-known examples is the preconditioned
version of the conjugate gradient method for the solution of systems of
linear equations. In this paper we study the application of the pre-
conditioning technique for transonic flow problems, in which the
governing equations are nonlinear and of mixed elliptic~hyperbolic type.
Two iterative methods are presented, which are based on using a precon-
ditioned conjugate gradient algorithm. Numerical results are reported
which show that the present methods are computationally more efficient
than the standard iterative procedure based on the successive line

over-relaxation method.
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1. INTRODUCTION

The study of transonic aerodynamics has received considerable
attention in the recent past, this is due to the fact that modern
transport aircrafts operate at transonic speeds. The mathematical
formulation of the transonic flow problem is well known, but its
solution is not straightforward to obtain, because the governing
partial differential equations are nonlinear and of mixed type.
The standard numerical procedure for transonic flow calculations
is based on the successive line overrelaxation method. However,
not only does that method require an estimation of a relaxation
parameter, but it also suffers from slow convergence as well,
Alternative computational procedures such as the approximate
factorization methods have been suggested recently [Holst and
Ballhaus, 1979]. These methods have been shown to provide faster
convergence rates than the successive line overrelaxation method
if a set of iteration parameters is properly determined. Moti-
vated by the difficulties in choosing optimal parameters a priori,
it is therefore of strong interest to develop an efficient and
reliable method which does not depend upon iteration parameters.
Two such methods are presented in this paper based on using a
preconditioning technique with the conjugate gradient method.

We discuss the basic mathematical formulation for the
transonic flow problem in section 2, the standard relaxation
method and the approximate factorization methods in sectiom 3,
two iterative procedures based on the preconditioned conjugate
gradient algoritlms in section 4, computational results in
section 5, and finally, concluding remarks are given in section
6.

The purpose of this paper is to study the application of
preconditioning techniques to accelerate the rate of convergence
of iterative methods for transonic flow problems. 3Because of
space limitations, many important aspects of the numerical solu-

tion for transonic flow calculations are not included.



2. TRANSONIC FLOW CALCULATIONS

2.1 Mathematical Formulation

The basic differential equation governing the flow of an inviscid,
isentropic fluid is given by a kinematical relation representing

the conservation of mass

V-pg =0 [1]

where
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Here ¢ is the velocity potential, p, the density, M_, the Mach
number at infinity, a, the local speed of sound and y, the ratio
of specific heats.

The tangential and wake boundary conditions, and the require-
ment that the velocity vanishes at infinity, complete the for-
mulation of the governing equation.

For a two-dimensional flow in cartesian coordinates, Egqua-

tion [1] can be expressed in the form
(o@x)x + (O¢y)y =0 [2]

This is known as the transonic full potential equation. In this
paper we shall concentrate on the iterative solution of Equation
[2]. From the mathematical point of view, the main difficulties
associated with Equation {2] are as follows:

(a) the equation is nonlinear, where p is a function of Oy and
Qy

(b) the equation is of mixed type: it changes from elliptic in
subsonic regions to hyperbolic in supersonic regions, and the
boundary between these regions is not known.

(c) the equation admits discontinuous solutions such as shocks

which may exist in the flow.
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(d) both compression and expansion shocks are admitted by the
equation, and an additional condition must be introduced in
order to eliminate the expansion shocks since they are physically

meaningless.

For low Mach numbers (M<1) the flow is completely subsonic,
and for high Mach numbers (M>1l) the flow is completely super-
sonic (for airfoils with sharp leading and trailing edges).

Figure 1 shows a typical transonic flow around an airfoil.

FIGURE 1. Transonic flow around an airfoil.

2.2 Numerical Procedures

It was first suggested by Murman and Cole [1971] that a type-
dependent finite difference scheme could be used for transonic
flow calculations. In their method central differences are used
in subsonic regions, and upwind differences are used in the super-
sonic regions. It should be noted that an artificial viscosity
is effectively introduced by using the upwind biased scheme in
the supersonic regions, which in turn, is needed to eliminate
the expansion shocks.

Another method, namely the artificial density method [Hafez,
South and Murman, 1978}, has recently been proposed where an
artificial viscosity is easily implemented. 1In this method the

transonic potential equation [2] is rewritten in the form
(pe )y + (oqby)y =0 (3]

where



o
"

0 = up AS ,
s

max (0, 1 - a2/q2) .

=
n

Here ¢, @2 and q are defined as in Equation [1]. The term psAS

is the product of the streamwise density gradient and the step
length along a streamline., The use of t in Equation [3] produces
a disgipative term when correct differencing is applied. It has
been shown that retarding the density produces the same effect

as the artificial viscosity introduced by the type~dependent
schemes [Hafez, South and Murman, 1978].

Using the artificial density method, a central difference
approximation can be applied to the modified equation [3] regard-
less of whether the region is subsonic or supersonic. An immedi-
ate consequence of this is that the regular structure of the
matrix equation which results from the discretization of the
linearized transonic equation is preserved. It should be noted
that this property will be destroyed when an artificial viscosity
is explicitly used. Because of this advantage the artificial

density method is used in this paper.

3. ITERATIVE PROCEDURES

Assuming the density ¢ is known from the previous iteration, a

central difference approximation to Equation [3] is given by

+
pf + D D) 4. . = 0. 4
x Pied, 5 x 0 Uy P, y) Y43 4]

where D; and D: are the standard backward and forward difference

operators in the x~-direction, they are defined as follows.

Do, .= (o, ., = ¢, :
x¢1,3 (’1,3 ¢1—1,3>/Ax
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Dybi,s = (G413

- ¢, .)/bx
¢1’3)/
. - +
Similar definitions are given for Dy and Dy'

The solution of the continuous problem is thus reduced to

the solution of the following matrix equation

AG™ " = g (5]

where A is a symmetric positive definite matrix, whose elements
- by
are calculated from the previous solution ¢ .

A simple way to solve Equation [5] is by a first degree

iterative scheme

6" = = 11" [6]
where 8¢" = ¢n+l - " R =b - A(¢n) ¢ , and T is an iteration
parameter.

The simple iterative scheme [6] can be regarded as an itera-
tion in pseudo-time, where the term 6¢n produces a time-step
level of the scheme. If 1 = At/c then Equation [6] is a discre-
tization for the equation

ae, = (o) + (Pe)y (7]
Note that this scheme will converge for subsonic flow mainly. Im
order to obtain convergence for a transonic flow a ¢xt term must
be included in the left hand side of Equation [7]. [Hafez and
South, 1979].

In order to accelerate the convergence of the iterative
scheme, a8 preconditioning matrix M, can be introduced. The pre-

conditioned version of Equation [6] is

§6 = — M L LD

or



Mée = ~ 1" [8]
It is not hard to see that the matrix M determines the rate at
which the iterative scheme converges. Generally speaking, if M
is a good approximation of A, then a fast convergemnce rate can
be expected.

To implement the preconditioned scheme [8] effectively, the
matrix M must be easily invertible. A common approach is to
factor M such that

M= MM, [9]

and the product of the factors is an approximation to A. Further-
more, Ml and M2 should have & simple structure, such as a tri-
angular matrix or a tridiagonal matrix.

We show that the successive line overrelaxation method
and the approximate factorization methods can be described by
the iterative scheme [8]. The main difference between these
methods is in the choice of the preconditioning matrix M, and

consequently, different rates of convergence result.

3.1 Successive Line Overrelaxation (SLOR) Method.

The SLOR method has been regarded as the standard iterative pro-
cedure for transonic flow calculations. The SLOR algorithm can
be expressed by Equation [8], where
P, s =
Moo, |, = [1 (- T D )+(D]
i,] y

bx Ax i-2,i7x

E;,j+%n;>}5¢i,j [10]
It should be noted that the scheme is semi-implicit, in the sense
that it is explicit in the x-direction, and is implicit in the
v-direction where an inversion of a tridiagonal matrix equation
for a given value of i is required. Notice that D;6¢i,j in
Equation [10] generates a ¢xt term, which is needed for the con-

vergence in the supersonic regions.
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Although the SLOR algorithm is reliable for transonic flow
calculations, its convergence rate is slow for many practical
problems. It is known that the rate of convergence of a fully
implicit scheme can be faster than that of a semi-implicit
or explicit iteration scheme. In the following, different pre-
conditioning matrices M are studied, their choice will make the

iterative scheme described in [8)] become fully implicit.

3.2 Alternating Direction Implicit (ADT) Method.

Using the standard ADI scheme the matrix M can be constructed as

+
D )(e=D_op. .
JX( y i,i+3%

-+
D) 6¢, . 11
D oy | [11]

where ¢ is an iteration parameter.

It is easily seen that the scheme is fully implicit. Multi-

plying the factors in Equation [11], it gives

- — S - +
D . .D.D_p, .,iD
x Pit,37%y P54y -— +

aMda, .=al|-a- = + D
i, ( o X °i+%,ij

-— +
+ D »p D |69, .
Yy Ci,j+E Y) ¢1sJ

[12]
Thus M is an approximation to the original problem, and the first
two terms in the bracket represent the errors associated with the
ADI scheme. It should be noted that there is no ¢xt term in

this scheme, instead the first error term a5¢i 5

produces a ¢
. t

term in the iteration.

3.3 Approximate Factorization (AF) Method.

The AF method was first studied by Ballhaus and Steger [1975] for
the transonic small disturbance equation, and it subsequently

was applied to the tramnsonic full potential equation by Holst and
Ballhaus [1979]. In the AF scheme the matrix M is chosen as follows



- - - + - +
aMée, ,= -(D_=-D_op, , ,D)(e-p, , D) 8¢, . 13
i,] X y i,i+Ey 14,3 x c1jl,J [13]
Multiplying the factors of M gives
- = + = +
D . 241D . .D
A - Py Pty Piddigx
oMé¢, .= al=aD_ -
1,3 o
- - + - - +
+ D D +D D S, . 14
x “itg, 5 x vy 1,54 y) %1,3 [14]

It is important to note that unlike the ADI scheme the first

error term aD;Gci in Equation [14] does produce a ¢xt term in

the iteratiom. '

In addition to the relaxation parameter T associated with
the iterative scheme [8], both ADI and AF methods require an
estimation of the parameter o. It has been found that the high-
frequency and low-frequency errors can be reduced effectively by
choosing 2 suitable sequence for c.

Computational experiments show that the ADI scheme provides
an excellent convergence rate for subsonic flow calculatioms.
However, it is difficult to obtain convergence for cases of
transonic flows. Divergence of the ADI scheme on nonuniform
grids has been observed [South, 1981]. On the other hand, the
AF scheme gives a good convergence rate for transonic flows pro-
vided the values of 7 and o are properly chosen. The key success
of the AF scheme is associated with the fact that a ¢xt term
which is needed for convergence in the supersonic regions is in-
cluded in this scheme.

It should be mentioned that another implicit approximate
factorization scheme has recently been investigated by Sankar
et al [1981], in which the factors of M are based on using the
strongly implicit procedure [Stone, 1968]. Like the AF method
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the strongly implicit procedure also requires an estimation of

a sequence of parameters .

4. PRECONDITIONED CONJUGATE GRADIENT METHOD

In the previous section we have described several iterative pro-
cedures for tramsonic flow calculations. All of these methods
can be regarded as using a preconditioning technique for a first-
degree iterative scheme., The main difficulty in the application
of these schemes efficiently is the requirement of choosing
optimal parameters for 7 and a. It should be pointed out that
improper values for these parameters would lead to & slow con-
vergence or even a divergence for the iterative scheme. To over-
come this difficulty we shall now consider the method of conju-
gate gradients (CG).

The CG method was first proposed by Hestens and Stiefel
[1952] for solving a symmetric and positive definite system of
linear equation. The basic CG algorithm for the solution of
Equation [5] is as follows.

Let ¢P be an arbitrary vector, compute
2= b ~ A¢° , p° = £°

Then for n=0, 1, 2, ..., compute

n+l n n
¢ = ¢ + o P
A B o Ap® [15]
where o n 0 n
e = (r,r )/ (P ,Ap")
Pn+l - rn+l + 8 Pn
n
where
+ +
8 = (rn l’rn l)/(rn’rn)
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Note that no estimation of iteration parameters is required in
the CG algorithm. Other important properties and features of
this method can be found in Reid [1971].

The CG algorithm given in Equations [15] can be rewritten

in the following three~terms recurrence relation

a
n+2_, n+tl n _ _n+l ntl_ o, _ n+1
(¢ 2¢7 T+ )+ -E;— Bn)(¢ ¢) @ 4T
or
826 + wig = = nr™ L [16]

Clearly it is & second-degree iterative scheme. If 8n=0
for all n, Equation [16] then reduces to a first degree scheme.

Over the last few years the preconditioning technique has
been successfully applied with the CG algorithm for solving large
sparse systems of linear equations [Evans, 1967; Axelsson, 1974;
Meijerink and van der Vorst, 1976; Wong, 1979, etc.]. Let M be
the preconditioning matrix, and consider the system

LA = ¥t [171]

The preconditioned CG (PCG) algorithm for Equation [17] is as
follows.

Let ¢° be an arbitrary vector, compute

©=b- A¢° ’

Solve Mz° = I, > Set po = z°
Then forn =0, 1, 2, ... compute
+
¢n 1_ mn + o Pn
n
rn+1 =P - Apn




q

where

¢ = ®,2™)/ (", ap™) (18]
Solve Mzn+l = rn+l
pn+l - zn+1 + 8 pn
n
where Bn = (rn+l,zn+l)/(rn,zn).

The PCG algorithm can be viewed as a preconditioning version

of a second-degree iterative scheme, namely

M 62¢ + uMé¢ = - nrn+l [19]

Note that at each step in the PCG algorithm, the solution
of the linear system Mz=r is required. In order to solve this
matrix equation efficiently, M is usually chosen to be the product
of MlM2 as defined in [9]. Different factorization for the matrix
M lead to different PCG algorithms.

In this paper we shall consider two types of preconditioning
matrices, in which M is an approximate factorization of A and
M=M1M2.

(a) Row-sum agreement factorization [Wong, 1979]. 1In this
factorization the following conditions are satisfied:
I = M =

) (Ml>i,j (AL)i,j and ( Z)i,j (AU)i,j where M, and M, are
a lower and upper triangular matrices respectively, and M, and

M2 have nonzero elements only in those positions which coirespond
to the nonzero elements in the lower or upper triangular part of

A,

II) For Ai’j¢0 and i#j , Mi,j=Ai,j i.e. the off-diagonal ele-

ments of M whose locations correspond to the nonzero off-diagonal
elements of A are set to those values.

III) The row-sums of M are the same as those of A.

(b) Symmetric successive overrelaxation (SSOR) preconditioning

[Axelson, 1974].
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Let A be written in the form

A=D-L-~-1T

where D is a diagonal matrix, and L and U are strictly lower and
upper triangular matrix respectively, then the preconditioning

matrix M can be expressed by

_ 1
w{(2=-w)

1

M = (D~wL) D © (D-wl)

where w is a relaxation parameter. The rate of convergence of
the PCG method is mnot as sensitive as to choice of w in the SOR
iterative scheme.

Since the transonic potential equation [2] is nonlinear in
nature, the sclution of a nonlinear system of algebraic equations
is required. The solution of this nonlinear problem can be
obtained by solving z sequence of linearized systems of equatioms,
however, the matrices generated by these linearized éystans are
different for each iteration step. In the problem comnsidered
here, the matrix equation is modified according to the solution
obtained from the previous iteration. Consequently, the pre-
conditioning matrix M will vary from iteration to iteration. The
requirement for calculating the factorizations of M at each
iteration step will increase the computational work considerably;
thus, it would be very advantageoﬁs to choose a preconditioning
matrix independent of the iteration step.

Recall that the matrix A in Equation [5] corresponds to the

finite-difference approximation to

a_(cs.) + 3 _(p3.) [201

Now consider another matrix B which results from the discretiza-

tion for the following operator

o (axX + ayy) [21]
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Let the preconditioning matrix M be an approximate factorization

to B instead of A, with

M= M1M2M3 R [22]

where Ml is a diagonal matrix whose elements are given by;i 50
’

and the product of M
8_.+3

( = yy

the row-sum agreement factorization or the SSOR preconditioning,

2M3 is an approximation to the operator

). The elements of M2 and M3 can be computed by either

and these values remain unchanged throughout the calculations.
The preconditioning based on [22] and [21] does not include
a ¢ term in the iterative scheme. However, if B is modified so

Xt
“that it is a difference approximation to

O(axx + BYY + eax) s [23]

where ¢ is a parameter to be discussed shortly. Then a ¢xt term
is introduced. The preconditioning matrix M is defined in Equa-
tion [22], where M1 is the diagonal matrix denoting the density
elements at each grid point, the product M2M3 is an approximate
factorization to (Bxx + ayy + sax).

In this paper two iterative procedures based on PCG methods
are investigated.

(a) SLOR + CG scheme

This is a combination of the SLOR scheme and the PCG algorithm,
the preconditioning matrix is based on [21] and [22]. The re-~
laxation step is needed for convergence in cases of transonic
flows because the PCG algorithm with the factorization given

in [21] and [22] does not include a ¢xt term.

The present combined iterative scheme is similar to that
proposed by Jameson [1976], in which a relaxation scheme and a
fast solver are used. However, there are many advantages in
using the CG method over the fast solver routine:

I) There is no restriction on the grid in any direction in the

computational domain.
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II) Since only the overall convergence for the nonlinear prob-
lem is of interest, it is sufficient to use a small number of
iterations in the PCG algorithm for the solution of the linearized
system. This in turn provides a considerable saving in the com-
putational work.

III) The PCG algorithm can be easily extended for three-
dimensional problems.

(b) PCG scheme

With the modified approximate factorization [22] and [23], a

¢
Xt
this purely PCG scheme for subsonic and transonic flow calcula-

term is explicitly included. Consequently a convergence for

tions can be ensured.

Note that if the parameter ¢ in [23] is a non-zero comnstant,
then a Cxt term will be introduced in both subsonic and supersonic
regions. The ¢xt term is needed for convergence in the supersonic
region only; however, its presence in the subsonic regions may
decrease the convergence rate of the iterative scheme. To over-

come this problem, ¢ is chosen as follows

o
#

[24]

= % 4
Ax

where
¢ = max(0, 1 - lé% s
M
2 - o
7 -
q

a% and q2 are defined in Equations [1] and [2]. The parameter
¥ can be regarded as a switching function, such that ¢ is zero
in subsonic regions but nonzero in supersonic regions. With this
definition for e, the factorization of M must be modified accord-
ing to the development of the supersonic regions. However, it is
sufficient to update the approximate factorization for every k

step, and k=5 will be used in the numerical experiments reported
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in the next section.

5. COMPUTATIONAL RESULTS

In order to compare the performance of the PCG methods and the

standard iterative procedure based on the SLOR method, two test
problems for transonic potential calculations around a circular
cylinder and NACA 0012 airfoil are examined. Particular atten-
tion is focused on the comparison of rates of convergence for
subsonic and transonic flow problems. The CPU times in seconds
on the CYBER-175 computer are also reported. 1In all cases the
maximum residual, Rmax’ is used to measure the convergence of
the iterative process.

Preconditioning techniques based on the SSOR method and the
row-sum agreement factorization have been compared, and the con-
vergence rate of the former is slower than that of the latter
for all problems tested. Thus the results for the PCG method
presented here will be based on the row-sum agreement factoriza-

tion to determine the preconditioning matrix M,

5.1 Flow Calculations Around a Circular Cylinder
The SLOR and the combined SLOR + CG methods are compared. A

61x31 grid is used in all cases with a uniform mesh in the €-
direction and a 15 percent stretching in the r~direction.
Figures 2 and 3 show the rates of convergence of the two methods
for subsonic and transonic cases respectively. The pressure
distributions around the circular cylinder are plotted in Figure
4, Figure 5 shows the rates of convergence for different values
of w, the relaxation parameter in the SLOR method. Note that
the convergence for the combined SLOR + CG method is almost the

same for a wide range of w.

5.2 Flow Calculations Afound NACA 0012 Airfoil at Zero Angle of
Attack

A 61x31 grid is used in all calculations, and the Mach number
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M _=0.6 corresponds to a2 subsonic flow, while M_=0.85 corresponds
to a transonic flow. Figures 6 and 7 show a comparison of the
SLOR and SLOR + CG methods for two different grid systems. 1In
Figure 6 a highly stretched grid is used which corresponds to
stretching the physical domain from =« to += in the x-direction
and from 0 to 4+~ in the y-direction. 1In contrast, Figure 7 cor-
responds to a finite physical domain, in which uniform grids are
used in both x- and y-directions. It is clear that the combined
SLOR + CG method is not sensitive to the stretched grids. Figure
8 shows the results for the purely PCG method. The corresponding

pressure distributions are shown in Figure 9.

6. CONCLUSION

Iterative procedures for subsonic and transonic flow calculations
have been studied in this paper. It appears that current exist-
ing procedures, which include the SLOR, ADI, AF methods, can be
regarded as the application of a preconditioning technique to a
first degree iterative scheme. All these methods require an
estimation of iteration parameters in order to obtain an optimal
convergence rate. On the other hand, we show that the PCG algo-
rithm provides a second degree iterative scheme, in which no
estimation of any parameter is needed. This particular feature
provides the basis for an efficient and reliable iterative proce-
dure. Even for the case of the SLOR + CG scheme, the convergence
of this combined method is not sensitive to the relaxation para-
meter as is the case for the SLOR scheme. For all problems
tested here, the PCG methods provide faster rates of convergence
than the SLOR method. They give excellent results for subsonic
cases, and gives a modest improvement for transonic cases as
well. It should be mentioned that the PCG methods have also
been tested for transonic finite element calculations with simi-
lar success [Wong and Hafez, 1981]. It is important to note that
the present PCG methods are not sensitive to the stretched grids,

and their power increases when a finer grid is used and when a
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higher accuracy is required. It holds promise for 3D calculations

as well.
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FIGURE 5. Dependence of convergence rates on relaxation
parameter w at M_ = 0.39.
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FIGURE 6. Rates of convergence for flow calculations around
NACA 0012 airfoil with highly stretched grid.
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FIGURE 7. Rates of convergence for flow calculations around
NACA 0012 airfoil with uniform grid.
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FIGURE 8. Rates of convergence for flow calculations around

NACA 0012 airfoil.
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FIGURE S. Pressure distributions around NACA 0012 airfoil

at different Mach numbers.




